An automatic transmission (commonly "AT" or "Auto") is an Automobile Gearbox that can change Gear ratios automatically as the vehicle moves, freeing the driver from having to shift gears manually. Similar but larger devices are also used for heavy-duty commercial and industrial vehicles and equipment.

Most automatic transmissions have a set selection of possible gear ranges, often with a Parking pawl feature that will lock the output shaft of the transmission. Continuously variable transmissions (CVTs) can change the ratios over a range rather than between set gear ratios. CVTs have been used for decades in two-wheeled scooters but have seen limited use in a few automobile models. Recently, however, CVT technology has gained greater acceptance among manufacturers and customers.

Some machines with limited speed ranges or fixed engine speeds, such as some Forklift trucks and Lawn mowers, only use a torque converter to provide a variable gearing of the engine to the wheels.


Comparison with manual transmissionEdit

In most Asian markets, automatic transmissions have become very popular since the 1990s. Most cars sold in the United States since the 1950s have been equipped with an automatic transmission, though it remains common practice to advertise the cheaper pricing based on manual transmission and treating automatic as an upgrade. However, manual transmission is still more popular than automatic in Europe. Automatic transmissions are easier for drivers, especially beginners. In some jurisdictions, drivers passing their Driving test in an automatic-transmission vehicle will not be licensed to drive a manual-transmission vehicle. Examples of this are in the United Kingdom, Lithuania, Ireland, the Netherlands, Sweden, Poland, Australia, South Africa, Trinidad and Tobago, People's Republic of China, Republic of Korea and Israel. However, a driver holding a manual license is permitted to drive an automatic.

Automatic transmission modesEdit

Conventionally, in order to select the mode, the driver would have to move a gear shift lever located on the steering column or on the floor next to him/her. In order to select gears/modes the driver must push a button in (called the shift lock button) or pull the handle (only on column mounted shifters) out. Some vehicles (like the Aston Martin DB9) position selector buttons for each mode on the cockpit instead, freeing up space on the central console. Vehicles conforming to US Government standards must have the modes ordered P-R-N-D-L (left to right, top to bottom, or clockwise). Prior to this, quadrant-selected automatic transmissions often utilized a P-N-D-L-R layout, or similar. Such a pattern led to a number of deaths and injuries owing to unintentional gear mis-selection, as well the danger of having a selector (when worn) jump into Reverse from Low gear during engine braking maneuvers.

Automatic Transmissions have various modes depending on the model and make of the transmission. Some of the common modes are:

Park (P) – This selection mechanically locks the transmission, restricting the car from moving in any direction. A Parking pawl prevents the transmission—and therefore the vehicle—from moving, although the vehicle's non-drive wheels may still spin freely. For this reason, it is recommended to use the Hand brake (or parking brake) because this actually locks the (in most cases, rear) wheels and prevents them from moving. This also increases the life of the transmission and the park pin mechanism, because parking on an incline with the transmission in park without the parking brake engaged will cause undue stress on the parking pin. An efficiently-adjusted hand brake should also prevent the car from moving if a worn selector accidentally drops into reverse gear during early morning fast-idle engine warmups.

A car should be allowed to come to a complete stop before setting the transmission into park to prevent damage. Usually, PARK is one of only two selections in which the car's engine can be started. In some cars (notably those sold in the US), the driver must have the footbrake applied before the transmission can be taken out of park. The Park position is omitted on buses/coaches with automatic transmission, which must be placed in neutral with the parking brakes set.

Reverse (R) – This puts the car into the reverse gear, giving the ability for the car to drive backwards. In order for the driver to select reverse they must come to a complete stop, push the shift lock button in (or pull the shift lever forward in the case of a column shifter) and select reverse. Not coming to a complete stop can cause severe damage to the transmission. Many modern automatic gearboxes have a safety mechanism in place, which does to some extent prevent (but doesn't completely avoid) inadvertently putting the car in reverse when the vehicle is moving. This mechanism usually consists of a solenoid-controlled physical barrier on either side of the Reverse position, which is electronically engaged by a switch on the Brake Automobile. Therefore, the brake pedal needs to be depressed in order to allow the selection of reverse. Some electronic transmissions prevent or delay engagement of reverse gear altogether while the car is moving.

Neutral/No gear (N)– This disconnects the transmission from the wheels so the car can move freely under its own weight. This is the only other selection in which the car can be started.

Drive (D)– This allows the car to move forward and accelerate through its range of gears. The number of gears a transmission has depends on the model, but they can commonly range from 3, 4 (the most common), 5, 6 (found in VW/Audi Direct Shift Gearbox), 7 (found in Mercedes 7G gearbox, BMW M5 and VW/Audi Direct Shift Gearbox) and 8 in the newer models of Lexus cars. Some cars when put into D will automatically lock the doors or turn on the Daytime Running Lamps.

Overdrive (mechanics) ([D], OD, or a boxed D) - This mode is used in some transmissions to allow early Computer Controlled Transmissions to engage the Automatic Overdrive. In these transmissions, Drive (D) locks the Automatic Overdrive off, but is identical otherwise. OD (Overdrive) in these cars is engaged under steady speeds or low acceleration at approximately 35-45 mph (approx. 72 km/h). Under hard acceleration or below 35-45 mph, the transmission will automatically downshift. Vehicles with this option should be driven in this mode unless circumstances require a lower gear.

Second (2 or S) – This mode limits the transmission to the first two gears, or more commonly locks the transmission in second gear. This can be used to drive in adverse conditions such as snow and ice, as well as climbing or going down hills in the winter time. Some vehicles will automatically upshift out of second gear in this mode if a certain rpm range is reached, to prevent engine damage.

First (1 or L) – This mode locks the transmission in first gear only. It will not accelerate through any gear range. This, like second, can be used during the winter season, or for towing.

As well as the above modes there are also other modes, dependent on the manufacturer and model. Some examples include;

  • D5 – In Hondas and Acuras equipped with 5-speed automatic transmissions, this mode is used commonly for highway use (as stated in the manual), and uses all five forward gears.
  • D4 – This mode is also found in Honda and Acura 4 or 5-speed automatics and only uses the first 4 gears. According to the manual, it is used for "stop and go traffic", such as city driving.
  • D3 – This mode is found in Honda and Acura 4-speed automatics and only uses the first 3 gears. According to the manual, it is used for stop & go traffic, such as city driving. This mode is also found in Honda and Acura 5-speed automatics.
  • + − and M – This is the manual selection of gears for automatics, such as Porsche's Tiptronic. This feature can also be found in Chrysler and General Motors products such as the Dodge Magnum and Pontiac G6. The driver can shift up and down at will, by toggling the shift lever (console mounted) like a semi-automatic transmission. This mode may be engaged either through a selector/position or by actually changing gear (e.g. tipping the gear-down paddles mounted near the driver's fingers on the steering wheel).

Hydraulic automatic transmissions Edit

The predominant form of automatic transmission is hydraulically operated, using a Fluid coupling or torque converter and a set of planetary gearsets to provide a range of torque multiplication.

Parts and operationEdit

A hydraulic automatic transmission consists of the following parts:

  • Torque converter: A type of Fluid coupling hydraulically connecting the engine to the transmission. It takes the place of a mechanical Clutch, allowing the engine to remain running at rest without stalling. A torque converter differs from a fluid coupling in that it provides a variable amount of torque multiplication at low engine speeds, increasing "breakaway" acceleration. This is accomplished with a third member in the "coupling assembly" known as the stator, and by altering the shapes of the vanes inside the coupling in such a way as to curve the fluid's path into the stator. The stator captures the kinetic energy of the transmission effect using the leftover force of it to enhance torque multiplication.
  • planetary gearsets: A compound planetary set whose bands and clutches are actuated by hydraulic servos controlled by the valve body, providing two or more gear ratios.
  • Clutches and bands: to effect gear changes, one of two types of clutches or bands are used to hold a particular member of the planetary gearset motionless, while allowing another member to rotate, thereby transmitting torque and producing gear reductions or overdrive ratios. These clutches are actuated by the valve body (see below), their sequence controlled by the transmission's internal programming. Principally, a type of device known as a sprag or roller clutch is used for routine upshifts/downshifts. Operating much as a ratchet, it transmits torque only in one direction, freewheeling or "overrunning" in the other. The advantage of this type of clutch is that it eliminates the sensitivity of timing a simultaneous clutch release/apply on two planetaries, simply "taking up" the drivetrain load when actuated,and releasing automatically when the next gear's sprag clutch assumes the torque transfer.
The bands come into play for manually selected gears, such as low range or reverse, and operate on the planetary drum's circumference. Bands are not applied when drive/overdrive range is selected, the torque being transmitted by the sprag clutches instead. Bands are used for braking; the GM Turbo-Hydramatics incorporated this.
  • Valve body: hydraulic control center that receives pressurized fluid from a main pump operated by the fluid coupling/torque converter. The pressure coming from this pump is regulated and used to run a network of spring-loaded valves, check balls and servo pistons. The valves use the pump pressure and the pressure from a Centrifugal governor on the output side (as well as hydraulic signals from the range selector valves and the throttle valve or modulator) to control which ratio is selected on the gearset; as the car and engine change speed, the difference between the pressures changes, causing different sets of valves to open and close. The hydraulic pressure controlled by these valves drives the various clutch and brake band actuators, thereby controlling the operation of the planetary gearset to select the optimum gear ratio for the current operating conditions. However, in many modern automatic transmissions, the valves are controlled by electro-mechanical servos which are controlled by the Engine Management System or a separate transmission controller. (See History and improvements below.)
  • Hydraulic & Lubricating Oil: called Automatic transmission fluid (ATF), this component of the transmission provides lubrication, corrosion prevention, and a hydraulic medium to convey mechanical power. Primarily made from refined petroleum and processed to provide properties that promote smooth power transmission and increase service life, the ATF is one of the few parts of the automatic transmission that needs routine service as the vehicle ages.

The multitude of parts, along with the complex design of the valve body, originally made hydraulic automatic transmissions much more complicated (and expensive) to build and repair than manual transmissions. In most cars (except US family, luxury, sport-utility vehicle, and minivan models) they have usually been extra-cost options for this reason. Mass manufacturing and decades of improvement have reduced this cost gap.

History and improvementsEdit

Oldsmobile's 1940 models featured Hydra-Matic drive, the first mass-production fully automatic transmissions. Initially an Olds exclusive, Hydra-Matic had a Fluid coupling (not a torque converter) and three planetary gearsets providing four speeds plus reverse. Hydra-Matic was subsequently adopted by Cadillac and Pontiac, and was sold to various other automakers, including Bentley, Hudson, Kaiser, Nash, and Rolls-Royce. From 1950 to 1954 Lincoln (automobile) cars were also available with GM Hydra-Matic. Mercedes-Benz subsequently devised a four-speed fluid coupling transmission that was similar in principle to Hydra-Matic, but did not share the same design. Interestingly, that early Hydra-matic provided two features which are, today, being emulated. Its ratio spread through the four gears produced excellent "step off" and acceleration in first, good spacing of intermediate gears, and the effect of an overdrive in fourth, by virtue of the lower numerical axle ratio used. In addition, once under way, the transmission's fluid coupling was essentially in a lock-up mode, largely because of the pressures within the coupling housing, and so functioned as a modern lock-up torque converter. On upshifts, there was negligible slippage. One notable advance in the Hydra-matic was introduced in some 1956 model year cars from Pontiac, Oldsmobile and Cadillac. Addressing the issue of shift obtrusiveness, the new version utilized two fluid couplings...the second one being involved in the up/down shift transitions by alternately filling/emptying the coupling of fluid. Smooth, albeit somewhat slow shifts resulted; the only noticeable upshift was the 2-3 shift which involved timing between the two planetaries' clutch/band actions, in addition to the fluid transfer action in the second coupling. Another "innovation" for this new style Hydramatic was the appearance of a "Park" position on the selector. The "old" style Hydramatic, which was continued, still used the "Reverse" position for parking pawl engagement.

The first torque converter automatic, Buick's Dynaflow, was introduced for the 1948 model year. It was followed by Packard's Ultramatic in mid-1949 and Chevrolet's Powerglide for the 1950 model year. Each of these transmissions had only two forward speeds, relying on the torque converter for additional gear reduction. In the early 1950s Borg-Warner developed a series of three-speed torque converter automatics for American Motors Corporation, Ford Motor Company, Studebaker, and several other manufacturers in the US and other countries. Chrysler was late in developing its own true automatic, introducing the two-speed torque converter PowerFlite in 1953 and the three-speed TorqueFlite in 1956.

By the late 1960s most of the fluid-coupling four-speeds and two-speed transmissions had disappeared in favor of three-speed units with torque converters. Also around this time, whale oil was removed from automatic transmission fluid. By the early 1980s these were being supplemented and eventually replaced by Overdrive (mechanics)-equipped transmissions providing four or more forward speeds. Many transmissions also adopted the lock-up torque converter (a mechanical clutch locking the torque converter impeller and turbine together to eliminate slip at cruising speed) to improve fuel economy.

As the engine computers became more and more capable, even more of the valve body's functionality was offloaded to them. These transmissions, introduced in the late 1980s and early 1990s, remove almost all of the control logic from the valve body, and place it in into the engine computer. (Some manufacturers use a separate computer dedicated to the transmission but sharing information with the engine management computer.) In this case, solenoids turned on and off by the computer control shift patterns and gear ratios, rather than the spring-loaded valves in the valve body. This allows for more precise control of shift points, shift quality, lower shift times, and (on some newer cars) semi-automatic control, where the driver tells the computer when to shift. The result is an impressive combination of efficiency and smoothness. Some computers even identify the driver's style and adapt to best suit it.

ZF Friedrichshafen AG and BMW were responsible for introducing the first six-speed (the ZF 6HP26 in the 2002 BMW BMW BMW). Mercedes-Benz's 7G-Tronic was the first seven-speed in 2003, with Toyota Motor Company introducing an 8-speed in 2007 on the Lexus 460. Mercedes-Benz unveiled a conventional automatic transmission with the torque converter replaced with a lock-up clutch called the AMG SPEEDSHIFT MCT.

Automatic transmission models Edit

Some of the best known automatic transmission families include:

  • General Motors — Powerglide, Turbo-Hydramatic 350 and 400, 4L60-E, 4L80-E, Holden Trimatic
  • Ford: Cruise-O-Matic, C4, C6, AOD/AODE, E4OD, ATX, AXOD/AX4S/AX4N
  • Chrysler: TorqueFlite 727 and 904, A500, A518, 45RFE, 545RFE
  • BorgWarner (later Aisin AW)
  • ZF Friedrichshafen
  • Allison Transmission
  • Voith Turbo
  • Aisin AW; Aisin AW is a Japanese automotive parts supplier, known for its automatic transmissions and navigation systems
  • Honda
  • Nissan/Jatco
  • Volkswagen - 01M
  • Drivetrain Systems International (DSI) - M93, M97 and M74 4speeds, M78 and M79 6Speeds

Automatic transmission families are usually based on Ravigneaux, Lepelletier, or Simpson planetary gearsetssets. Each uses some arrangement of one or two central sun gears, and a ring gear, with differing arrangements of planet gears that surround the sun and mesh with the ring. An exception to this is the Honda line from Honda, which uses sliding gears on parallel axes like a manual transmission without any planetary gearsets. Although the Honda is quite different from all other automatics, it is also quite different from an Automated manual transmission

Many of the above Automated manual transmission exist in modified states which were created by racing enthusiasts and their mechanics by systematically re-engineering the transmission to achieve higher levels of performance. These are knows as "performance transmissions". An example of a manufacturer of high performance transmissions of General Motors and Ford transmissions is PerformaBuilt.

Continuously variable transmissionsEdit

A different type of automatic transmission is the continuously variable transmission or CVT, which can smoothly alter its Gear ratio by varying the diameter of a pair of Belt (mechanical) or chain-linked pulleys, wheels or cones. Some continuously variable transmissions use a Hydrostatic drive consisting of a variable displacement pump and a hydraulic motor to transmit power without gears. CVT designs are usually as fuel efficient as manual transmissions in city driving, but early designs lose efficiency as engine speed increases.

A slightly different approach to CVT is the concept of toroidal CVT or Continuously variable transmission (from infinitely variable transmission). These concepts provide zero and reverse gear ratios.

Some current hybrid vehicles, notably those of Toyota, Lexus and Ford Motor Company, have an "electronically-controlled CVT" (E-CVT). In this system, the transmission has fixed gears, but the ratio of wheel-speed to engine-speed can be continuously varied by controlling the speed of the third input to a Differential (mechanics) using an Electric motor-generator.

Manually controlled automatic transmissionsEdit

Most automatic transmissions offer the driver a certain amount of manual control over the transmission's shifts (beyond the obvious selection of forward, reverse, or neutral). Those controls take several forms:

  • Throttle kickdown: Most automatic transmissions include a switch on the throttle linkage that will force the transmission to downshift into the lowest possible ratio if the throttle is fully engaged at wide open throttle. The switch generally only functions up to a certain road speed, so as to prevent a downshift that would overrev the engine. This should not be confused with normal downchanges at part-throttle.
  • Mode Selection: Allows the driver to choose between preset shifting programs. For example, Economy mode saves fuel by upshifting at lower speeds, while Sport mode (aka Power or Performance) delays shifting for maximum acceleration. The modes also change how the computer responds to throttle input.
  • Low gear ranges: Many transmissions have switches or selector positions that allow the driver to limit the maximum ratio that the transmission may engage. On older transmissions, this was accomplished by a mechanical lockout in the transmission valve body preventing an upshift until the lockout was disengaged; on computer- controlled transmissions, the same effect is accomplished electronically. The transmission can still upshift and downshift automatically between the remaining ratios: for example, in the 3 range, a transmission could shift from first to second to third, but not into fourth or higher ratios. Some transmissions will still upshift automatically into the higher ratio if the engine reaches its maximum permissible speed in the selected range.
  • Manual controls: Some transmissions have a mode in which the driver has full control of ratio changes (either by moving the selector or through the use of buttons or paddles), completely overriding the automated function of the hydraulic controller. Such control is particularly useful in cornering, to avoid unwanted upshifts or downshifts that could compromise the vehicle's balance or traction. "Manumatic" shifters, first popularized by Porsche in the 1990s under the trade name Tiptronic, have become a popular option on sports cars and other performance vehicles. With the near-universal prevalence of electronically controlled transmissions, they are comparatively simple and inexpensive, requiring only software changes and the provision of the actual manual controls for the driver. The amount of true manual control provided is highly variable: some systems will override the driver's selections under certain conditions, generally in the interest of preventing engine damage.
  • Second Gear Takeoff: Some automatics, particularly those fitted to larger capacity or high torque engines, either when '2' is manually selected or by engaging a "winter mode", will take off in second gear instead of first, and then not shift into a higher gear until returned to D. This is done to reduce torque multiplication when proceeding forward from a standstill in conditions where traction was limited - snow or ice covered roads for example.

Some automatic transmissions modified or designed specifically for Drag racing may also incorporate a transmission brake, or "trans-brake," as part of a manual valve body. Activated by electrical solenoid control, a trans-brake simultaneously engages the first and reverse gears, locking the transmission and preventing the input shaft from turning. This allows the driver of the car to raise the engine rpm against the resistance of the torque converter, then launch the car by simply releasing the trans-brake switch.

See alsoEdit


External linksEdit

Smallwikipedialogo.png This page uses content from Wikipedia. The original article was at Automatic transmission. The list of authors can be seen in the page history. As with Jeep Wrangler Wiki, the text of Wikipedia is available under the GNU Free Documentation License.

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.